98 research outputs found

    The Mitochondrial Genome of Toxocara canis

    Get PDF
    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts

    Intercellular Transfer of Oncogenic H-Ras at the Immunological Synapse

    Get PDF
    Immune cells establish dynamic adhesive cell–cell interactions at a specific contact region, termed the immunological synapse (IS). Intriguing features of the IS are the formation of regions of plasma membrane fusion and the intercellular exchange of membrane fragments between the conjugated cells. It is not known whether upon IS formation, intact intracellular proteins can transfer from target cells to lymphocytes to allow the transmission of signals across cell boundaries. Here we show by both FACS and confocal microscopy that human lymphocytes acquire from the cells they scan the inner-membrane protein H-Ras, a G-protein vital for common lymphocyte functions and a prominent participant in human cancer. The transfer was cell contact-dependent and occurred in the context of cell-conjugate formation. Moreover, the acquisition of oncogenic H-RasG12V by natural killer (NK) and T lymphocytes had important biological functions in the adopting lymphocytes: the transferred H-RasG12V induced ERK phosphorylation, increased interferon-γ and tumor necrosis factor-α secretion, enhanced lymphocyte proliferation, and augmented NK-mediated target cell killing. Our findings reveal a novel mode of cell-to-cell communication—allowing lymphocytes to extend the confines of their own proteome—which may moreover play an important role in natural tumor immunity

    The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus

    Get PDF
    Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes

    CD46 Protects against Chronic Obstructive Pulmonary Disease

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease and emphysema develops in 15% of ex-smokers despite sustained quitting, while 10% are free of emphysema or severe lung obstruction. The cause of the incapacity of the immune system to clear the inflammation in the first group remains unclear. METHODS AND FINDINGS: We searched genes that were protecting ex-smokers without emphysema, using microarrays on portions of human lungs surgically removed; we found that loss of lung function in patients with chronic obstructive pulmonary disease and emphysema was associated with a lower expression of CD46 and verified this finding by qRT-PCR and flow cytometry. Also, there was a significant association among decreased CD46(+) cells with decreased CD4(+)T cells, apoptosis mediator CD95 and increased CD8(+)T cells that were protecting patients without emphysema or severe chronic obstructive pulmonary disease. CD46 not only regulates the production of T regulatory cells, which suppresses CD8(+)T cell proliferation, but also the complement cascade by degradation of C3b. These results were replicated in the murine smoking model, which showed increased C5a (produced by C3b) that suppressed IL12 mediated bias to T helper 1 cells and elastin co-precipitation with C3b, suggesting that elastin could be presented as an antigen. Thus, using ELISA from elastin peptides, we verified that 43% of the patients with severe early onset of chronic obstructive pulmonary disease tested positive for IgG to elastin in their serum compared to healthy controls. CONCLUSIONS: These data suggest that higher expression of CD46 in the lungs of ex-smoker protects them from emphysema and chronic obstructive pulmonary disease by clearing the inflammation impeding the proliferation of CD8(+) T cells and necrosis, achieved by production of T regulatory cells and degradation of C3b; restraining the complement cascade favors apoptosis over necrosis, protecting them from autoimmunity and chronic inflammation

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    Cell-to-cell interaction in the immune response. VII. Requirement for differentiation of thymus-derived cells.

    Get PDF
    Experiments were designed to test the possibility that thymus-derived (T) cells cooperate with nonthymus derived (B) cells in antibody responses by acting as passive carriers of antigen. Thoracic duct lymphocytes (TDL) from fowl gammaG-tolerant mice were incubated in vitro with fowl anti-mouse lymphocyte globulin (FALG), which was shown not to be immunosuppressive in mice. On transfer into adult thymectomized, irradiated, and marrow protected (TxBM) hosts together with a control antigen, horse RBC, a response to horse RBC but not to fowl gammaG was obtained. By contrast, TxBM recipients of nontolerant, FALG-coated TDL responded to both antigens and the antibody-forming cells were shown to be derived from the host, not from the injected TDL. These findings suggested that, under the conditions of the experiment, triggering of unprimed B cells in the spleens of TxBM hosts was not achieved with antigen-coated tolerant lymphocytes. Another model utilized the ability of B cells to bind antibody-antigen complexes. Spleen cells from TxBM mice, incubated in vitro with anti-fowl gammaG-fowl gammaG.NIP, were injected with or without normal TDL (a source of T cells) into irradiated hosts. Only mice given both cell types could produce an anti-NIP antibody response. In a further experiment, spleen cells from HGG.NIP-primed mice were injected together with NIP-coated B cells (prepared as above) into irradiated hosts. A substantial anti-NIP antibody response occurred. If, however, the T cells in the spleens of HGG.NIP-primed mice were eliminated by treatment with anti-theta serum and complement, the NIP response was abolished. It was concluded that antigen-coated B cells could not substitute for T cells either in the primary or secondary response. Treatment of T cells from unprimed or primed mice with mitomycin C impaired their capacity to collaborate with B cells on transfer into irradiated hosts. Taken together these findings suggest that before collaboration can take place T cells must be activated by antigen to differentiate and in so doing may produce some factor essential for triggering of B cells

    Analysis of A to I editing of miRNA in macrophages exposed to salmonella

    Get PDF
    The main mediator of the lipopolysaccharide (LPS) response in macrophages is activation of Toll-like receptor 4 (TLR4). This generates interferon-beta (INFbeta) production that stimulates increased expression of the RNA editing enzyme ADAR1. To determine if there is an increase in RNA editing in mature miRNA in response to TLR4 activation upon Salmonella infection of macrophages we analyzed small RNA deep sequencing data. Interestingly, we found that direct infection of macrophage cell lines with Salmonella does not result in an increase of edited mature miRNA. Thus, despite elevated levels of ADAR1 during TLR4 activation of macrophages mediated by Salmonella infection, ADAR1 does not result in redirection of miRNA. The most common consequence of ADAR activity on miRNA is a reduction in the mature miRNA level due to interference with miRNA processing of pri-miRNA. However, we found very few miRNAs with reductions in level, and no significant difference between miRNAs previously reported to be edited and those reported to be not edited. In particular, we did not see significant decrease in mir-22 and mir-142, nor editing of pri-mir-22 or pri-mir-142 in infected RAW macrophages. Thus, ADAR1 has very little, if any, effect on the miRNA machinery following TL4 activation by Salmonella infection
    • …
    corecore